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Introduction 
The unsaturated soil hydraulic properties determine the rate at which water and dissolved 

chemicals move through soils and rocks whose pore space is partially filled with water. These 
properties (the water retention and hydraulic conductivity curves) govern the rate at which water 
and dissolved substances move through the vadose zone (upper part) of the soil. Hydraulic 
properties are increasingly being required in simulation programs used in civil and 
environmental engineering, soil mechanics, geology, and soil science. Such simulations may 
lead to a better understanding of flow and transport in the vadose zone and they are therefore 
increasingly used as a management tool. Among potential Army and civilian applications are: (i) 
remediation and restoration strategies for sites contaminated through Army actions and the use of 
military training lands, (ii) trafficability and accessibility of land for different soil and weather 
conditions, (iii) prediction and control of floods, (iv) interpretation of remotely sensed data, and 
(v) water flow around man-made objects. 

Current methods to measure them are time consuming, expensive and imprecise. They 
are often perceived as impractical to meet the data requirements for most (large scale) 
applications. So-called pedotransfer functions (PTFs) are instead used to estimate hydraulic 
output data from input data such as soil texture, bulk density, organic matter content, and clay 
mineralogy. All PTFs have a strong degree of empiricism in that they contain model parameters 
that were calibrated on existing soil hydraulic databases. The PTFs can be as simple as a lookup 
tables that give hydraulic parameters according to textural class [e.g. Carsel and Parrish, 1988; 
Wösten et al, 1995] or include linear or non-linear regression equations [e.g. Rawls and 
Brakensiek, 1985; Minasny et al, 1999]. There are also PTFs with a more physical foundation, 
such as the pore-size distribution models by Burdine [1953] and Mualem [1976], which offer a 
method to calculate unsaturated hydraulic conductivity from water retention. Models by 
Haverkamp and Parlange [1986] and Arya and Paris [1981] use the shape similarity between the 
particle- and pore-size distributions to predict water retention. Tyler and Wheatcraft [1989] 
combined the Arya model with fractals, while Arya et al [1999a,b] further extended the 
similarity approach to predict water retention and unsaturated hydraulic conductivity. 

The practical application of most PTFs is often hampered by a lack of unsaturated 
hydraulic data to calibrate and evaluate PTFs. Furthermore, many PTFs have very stringent 
requirements for the input data. Most authors have usually established PTFs that provided the 
best results for their data set, often leading to models that require many input variables [cf. Rawls 
et al, 1991] or models that require very detailed particle size distributions [Arya and Paris, 
1981; Haverkamp and Parlange, 1986]. However, users of PTFs are frequently confronted with 
situations where one or several input variables needed for a PTF are not available. Another 
problem is that PTFs provide predictions with a modest level of accuracy and this level is not 
precisely known It would therefore be useful if PTFs could accept input data with varying 
degrees of detail and if predictions by PTFs could be accompanied with reliability estimates. 

Recently, neural network analysis was used to improve the predictions of empirical PTFs 
[Pachepsky et al, 1996; Schaap and Bouten, 1996; Minasny et al, 1999; Pachepsky et al, 
1999]. An advantage of neural networks, as compared to traditional PTFs, is that neural networks 
require no a priori model concept. The optimal, possibly nonlinear, relations that link input data 
(particle-size data, bulk density, etc.) to output data (hydraulic parameters) are obtained and 
implemented in an iterative calibration procedure. As a result, neural network models typically 
extract the maximum information from the data. Schaap et al [1998] used neural network 
analyses to predict van Genuchten [1980] water retention parameters and saturated hydraulic 



conductivity. To facilitate practical use of the PTFs, they designed a hierarchical structure to 
allow input of limited and more extended sets of predictors. The combination with the bootstrap 
method [Efron and Tibshirani, 1993] provided the confidence intervals for the PTF predictions. 
While neural network-based PTFs may provide relatively accurate predictions, they consist of a 
large number of coefficients that do not permit easy interpretation or publication in explicit form. 

In view of the above, the objectives of this Army-funded project are to: (i) derive PTFs 
with neural network models and to compare hydraulic properties predicted with these PTFs with 
those obtained from explicit PTFs already published in the literature, and (ii) develop user- 
friendly software to implement the neural network models. The first objective was addressed in 
earlier part of the program period using hydraulic data from the database UNSODA [Leij et al, 
1996; Nemes et al, 2001] This is one of the very few public databases that contains unsaturated 
hydraulic conductivity data. In the latter part of the project period, we developed the Rosetta 
program for estimating unsaturated hydraulic properties in an effort to meet the second objective. 

Problem Formulation 
One-dimensional water flow in a soil or other porous medium that is partially saturated 

with water is typically described with the mass balance equation according to Richards [1931]: 

^A^-i)] CD 
dt dz dz 

where 9 is the volumetric soil water content (L3 L"3), h is the soil water pressure head (assumed 
here to be positive for unsaturated conditions), K is the (unsaturated) hydraulic conductivity (LT 
'), / is time (T), and z is position (L). The water holding capacity of the soil is determined by the 
water retention curve, 9(h), while water transmission is governed by the hydraulic conductivity, 
K(h) or K(9). These functions are highly nonlinear and sometimes hysteretic. 

We used the expression of van Genuchten [1980] to parameterize retention data: 

Se = l^ = \l + (ah)T (2) 
9s-0r 

where the subscripts r and s denote residual and saturated water contents, respectively, n and m 
are shape factors, whereas a (L"1) is inversely related to air entry value. The model for the 
unsaturated hydraulic conductivity is based on Mualem [1976] with m=\-\ln: 

K(Se) = K0 Sfc-il-Sl'Tf (3) 

{l-(a/Qm"[l + (a/0T}2 

K{h)~Ko [iHahyr  () 

where K0 is a matching point for the conductivity function at saturation and I is an empirical 
factor for pore-connectivity and tortuosity. The ability of closed-form expressions to describe 
unsaturated hydraulic data has been tested by, among others Leij et al. [1997]. The above 
expressions provide an adequate description for most retention and conductivity data. 

The number of parameters in the Mualem-van Genuchten model (MVG) for the 
unsaturated conductivity is frequently reduced by using a measured value for the saturated 
hydraulic conductivity (Ks) as matching point (K0) and by assuming that the pore connectivity 
and tortuosity factor L can be set equal to 0.5. This approach may be convenient, but may not be 
very accurate [Schaap and Leij, 2000]. Unsaturated flow does not involve macropores thus 
setting K0=KS, i.e., using the experimental conductivity at saturation, leads to an overestimation 
of the unsaturated hydraulic conductivity. Setting L=0.5 is a widely accepted practice, but there 



is no physical reason to do so. Rather, this value was selected by Mualem (1976) on empirical 
grounds. There is no reason why another estimation procedure can not be used. The remaining 
parameters in Eq.(3) and (4) are essentially retention parameters, which can be estimated more 
easily and accurately from either retention measurements of PTFs. 

Our first task is, with help of the UNSODA database, to evaluate several strategies 
(PTFs) to predict the unsaturated conductivity function, i.e., L and K0, according to Eq.(3). The 
major part of the project was devoted to deriving neural network models for the prediction of soil 
hydraulic properties and to develop a user-friendly program that implements these neural 
network based PTFs for a hierarchy of input data. The implementation of PTFs based on neural 
networks is not as straightforward as those based on (linear) regression. In the latter case, the 
user can predict hydraulic parameters with explicit equations, perhaps a lengthy one, while in the 
former case a computer algorithm is often necessary for the prediction. The second part of the 
project was devoted to the development of a user-friendly program called Rosetta, to implement 
these neural network based PTFs for a hierarchy of input data to predict the output set {#, 0S, a, 
n, Ks, K0 and L) to describe water retention, saturated and unsaturated hydraulic conductivity. 
In the following we will document the program. 

Materials and Methods 

Data Sets 
In order to make the PTFs as widely applicable as possible, we obtained a large number 

of soil hydraulic data and corresponding predictive soil properties from three databases [cf. 
Schaap and Leij, 1998]. The dataset thus assembled contained 2,134 samples for water retention 
with a total of 20,574 6(h) points. Saturated hydraulic conductivity values were available for a 
subset of 1,306 samples while unsaturated hydraulic conductivity was known for 235 samples with 
a total of 4,117 K(h) points. The latter subset was solely derived from the database UNSODA [Leij 
et al, 1996; Nemes et al., 2000] with the requirement that at least five K(h) data points should be 
available. Figures 1 to 3 give the textural distributions of the datasets for water retention, Ks and 
unsaturated hydraulic conductivity. 

The parameters in Eq.(2) and (3) were fitted to water retention and unsaturated hydraulic 
conductivity data with the simplex or amoeba algorithm [Neider and Mead, 1965; Press et al., 
1988]. The objective function for water retention was: 

O^V) = ^(0r0!)2 (5) 

where #, and 0{ are the measured and predicted water contents respectively, iVw is the number of 
measured water retention points for each sample and p is the parameter vector {#, 0S, a, n}. For 
the optimization of unsaturated hydraulic conductivity parameters we used the following 
objective function: 

0K(P) = j^og10(Kd-^ogl0(Köf (6) 
/=i 

where K\ and K\ are the measured and predicted hydraulic conductivity respectively, N* is the 
number of measured K(h) data points and p={X"0, L}. Logarithmic values of K\ were used in Eq. 
(6) to avoid a bias towards high conductivities in the 'wet' range. In subsequent analyses, we 
used log-transformed values of a, n, Ks and K0 to account for their approximately lognormal 
distributions. 
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Figure 1. Textural distribution of the 2,134 samples for water retention. 

100  A  0 

Clay [% Silt [%] 

100 
100 80 60 40 20 0 

Sand[%] 

Figure 2. Textural distribution of the subset for saturated hydraulic 
conductivity (1,306 samples). 
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Figure 3. Textural distribution of the subset for unsaturated hydraulic conductivity (235 
samples). S: sand, IS: loamy sand, sL: sandy loam, scL: sandy clay loam, sC: sandy clay, L: 
loam, siL: silty loam, Si: silt, sicL: silty clay loam, siC: silty clay, cL: clay loam, C: clay. 

Model Calibration 
Because different numbers of samples were available for water retention, saturated and 

unsaturated hydraulic conductivity, we developed separate PTFs for each of these characteristics. 
For the prediction of the water retention parameters (6j- ,0S , a , n) and Ks, we followed a 
hierarchical approach to estimate hydraulic parameters with limited or more extended sets of 
input parameters. The first model (HI) consists of a lookup table that that contains parameter 
averages for each USDA textural class. The second model (H2) uses sand, silt, and clay as input 
and, in contrast to HI, it provides continuously varying hydraulic parameters across the textural 
triangle. The third model (H3) includes bulk density to its input while the fourth model (H4) also 
uses water content at 330 cm pressure. The last model (H5) includes a 15 bar water content in 
addition to the input variables of the fourth model. The choices of pressure heads were motivated 
by their availability in the NRCS database [Soil Survey Staff, 1995]. 

The hierarchical approach is uncertain for the unsaturated hydraulic conductivity because 
prior to his project no reliable data sets existed to investigate the dependency of unsaturated 
hydraulic conductivity on texture, bulk density and other parameters. Schaap and Leij [2000] 
first investigated the prediction of the unsaturated hydraulic conductivity. The results, which 
will be given shortly, indicate that K0 and L could be predicted from fitted water retention 
parameters (0T ,&s, a and n) rather than textural data. For the development of Rosetta, we also 
investigated how well we can predict K0 and L using predicted retention parameters obtained 
from models H1...H5. This method does not require fitted retention parameters and allows KQ 

and L to be estimated in a pseudo-hierarchical manner. 



While model HI is a simple table with average hydraulic parameters for each textural 
class, all other models were established using a combination of neural networks and the 
bootstrap method. Each of these PTFs consist of 60 (water retention) or 100 (saturated and 
unsaturated conductivity) neural networks models. These neural network models are all slightly 
different because they were calibrated on different subsets of the original dataset as generated by 
the Bootstrap Method (Efron and Tibshirani, 1993). For the sake of brevity, we refer to Schaap et 
al. (1998), Schaap and Leij, (1998), and Schaap and Leij (2000) for more information about the 
model calibration. 

Analysis 
The performance of the models was evaluated according to three error criteria using the 

same data that was used for model calibration. We computed the coefficient of determination 
(R2) between predicted and fitted hydraulic parameters. Further, we computed the root mean 
square error (RMSE) between measured and predicted water contents, saturated hydraulic 
conductivity and unsaturated hydraulic conductivity: 

RMSE =J-X(£-C)2 

In addition, we computed the mean error (ME) to quantify systematic errors with: 

ME =jjZtä-G[5\ 

The symbols C, and Q denote measured or predicted 6(h), log Ks, or log K(h) values; N is the 
number of measurements over which the RMSE and ME values were calculated. The RMSE and 
ME values will be given with w, s, and u subscripts for water retention, saturated, and 
unsaturated hydraulic conductivity, respectively. Predicted water retention or unsaturated 
hydraulic conductivity values were calculated by evaluating the hydraulic functions at the 
pressure heads of the measurements. Because logarithmic values were used for Ks and K(h), the 
corresponding RMSE and ME values are dimensionless; the units of RMSEW and MEW are in 
cmVcm3. In this study, we will compute the RMSE and ME values over all available data (i.e. 
JVW=20,574 for retention, Ns -1,306 for Ks, and #„=4,117 for K(h)). To investigate how the 
RMSE and ME values vary with pressure head, we will also compute these values for ten 
pressure head ranges between 0, 3.2, 10, 32, 100, 320, 1000, 3200, 10000, 32000, and 100000 
cm. 

Results 
Unsaturated Hydraulic Conductivity 

The optimization results of are presented in Table 1 as averages for each textural group or 
all 235 samples. Because logarithmic values were used for K\, RMSRK results are 
dimensionless. For the water retention curve, we found average RMSEw values between 0.0096 
and 0.0141 cm3cm"3. Contrary to our expectation, average logio(a) were higher for the Loams 
than for the Sands while we also found that the Loams had logi0(«) values that were lower than 
the Clays. For the hydraulic conductivity curve we found RMSEK values between 0.393 to 
0.481, which corresponds to an error of about 0.4 orders of magnitude. The relatively small 
variation in RMSEK indicates a good description of log hydraulic conductivity for all textural 
groups.   Average K0 values were almost an order of magnitude lower than average Ks. The 



Table 1. Optimized hydraulic parameters for each soil textural group with standard deviations in 
parentheses. For a, n, Ks and K0 the mean values and standard deviations were computed after 
the logio tranformations. 

N ft 

cm3cm'3 

ft 

Cm3cm"3 

logio(a) 
cm"1 

logio(n) 
RMSE 

w 
cm3cm"3 

logio(ATs 

) 
cm day'1 

log10(iQ 
cm day"1 

L 
RMSE 

K 

All 
Sands* 
Loams8 

Silts11 

Clays* 

235 
100 
41 

58 

36 

0.055(0.073) 
0.052(0.043) 
0.056(0.091) 

0.031 (0.058) 

0.098(0.109) 

0.442(0.101) 
0.396(0.056) 
0.512(0.132) 

0.428 (0.078) 

0.512(0.108) 

-1.66(0.52) 
-1.58(0.37) 

-1.39(0.50) 
-1.92(0.52) 

-1.75(0.64) 

0.214(0.209) 
0.349(0.228) 
0.076(0.047) 

0.139(0.141) 

0.114(0.112) 

0.0122 
0.0122 

0.0119 
0.0141 

0.0096 

1.92(0.81) 
2.24(0.79) 
2.03 (0.64) 

1.70(0.61) 

1.31(0.80) 

1.03(1.04) 
1.29(1.06) 
1.42(0.98) 

0.82(0.80) 

0.26(0.94) 

-3.09(8.75) 
-1.28(3.17) 

-6.97(9.57) 

-1.22(10.17) 

-5.96(12.40) 

0.410 
0.395 
0.398 

0.403 

0.481 

t: Sand ,L( >amy Sand , Sandy Loam, Sane y Clay Loam. 
§: Loam, Clay Loam. 
f. Silty Loam, Silt. 
#: Clay, Sandy Clay, Silty Clay, Silty Clay loam. 

difference may be caused by soil structure that allows macropore flow at or near saturation [cf. 
Luckner et al. 1989]. Unsaturated flow does not involve macropores thus causing much lower 
K0 to be inferred from unsaturated hydraulic conductivity. The results in Table 1 indicate that 
setting K0-Ks, i.e., using the experimental conductivity at saturation, leads to an overestimation 
of the unsaturated hydraulic conductivity. However, use of a the more accurate fitted rather than 
the measured value for K0 will lead to additional errors in the conductivity near saturation. 

The prediction of K0 and L was investigated for potential predictors like sand and clay 
percentages, bulk density, ft, ft, a, n, and Ks. A Spearman rank correlation (e.g. Press et al., 
1988) between potential input and output variables K0 and L was determined to select promising 
input variables. Subsequently, we developed neural network models to predicted K0 and L. 
Three models for predicting K0 and L were tested. Model A reflects the traditional Mualem-van 
Genuchten model [van Genuchten, 1980] with K0=KS and 1=0.5. In the case of model B, we 
constructed neural network models that predicted only K0 while assuming that L—l. Model C 
predicts both K0 and L. Based on the Spearman rank correlation, we used four different sets of 
predictors for models B and C: 1) sand and clay percentages and bulk density, 2) retention 
parameters {ft, ft, a, n), 3) {ft, ft, a, n) and Ks, and 4) sets 1 and 3 combined. Models B and C 
were indexed according to these four sets of predictors (i.e., B1..B4, C1..C4). 

Table 2 shows that the RMSEK of model A is more than one order of magnitude, with a 
very high value for the Clays (1.70). Models Bl and Cl yielded somewhat lower RMSEK values 
by using sand, silt, clay and clay (SSCBD) as predictors. Models B2 and C2 clearly show that 
water retention parameters make more effective predictors. Results for models B3 and C3 show 
that adding Ks to the retention parameters increased the coefficients of determination of K0. 
However, comparison with models B2 and C2 shows that RMSEK were only marginally reduced, 
if at all. Models C2, C3, and C4 had lower RMSEK than the B2, B3, and B4 models, especially 
for the Loams and Clays. This suggests that both K0 and L should be predicted. 



Table 2.    Coefficients of determination and RMSEK results for predictions of unsaturated 
hydraulic conductivity according to models A, B and C 

Model    Input 
R2 RMSEK 

logio L All Sands Loams Silts Clays 
(Ko) 

A           Ko=Ks, £=0.5 - - 1.31 1.22 1.35 1.20 1.70 

Flexible .Ko, L=-\ 
Bl          SCBD' 0.29 - 1.16 1.04 1.54 0.93 1.40 
B2          Q&a n 0.51 - 0.95 0.90 1.30 0.73 1.08 
B3         #6>sa n Ks 0.64 - 0.96 0.88 1.26 0.78 1.16 
B4         SCBDOAan 0.63 - 0.95 0.87 1.22 0.78 1.13 

Flexible K0 and L 
Cl          SCBD 0.27 0.08 1.18 1.16 1.48 0.86 1.43 
C2         e,9sa n 0.48 0.45 0.84 0.91 0.88 0.69 0.86 
C3          SrOsa n Ks 0.56 0.43 0.82 0.86 0.92 0.68 0.82 
C4         SCBDman 

Ks 
0.53 0.40 0.79 0.83 0.84 0.67 0.81 

t SCBD: sand, clay and bu k density. 

Although model C4 performed the 'best' in terms of RMSEK, the differences with models 
C2 and C3 were relatively small. Given the fact that C2 required only retention parameters to 
predict K0 and L, this model is preferable because retention parameters are already required a- 
priori to compute Se. It is interesting to note that model C2 uses less data than model A (Ks is not 
required), yet it has a RMSRK that is about 0.5 order of magnitude lower. Direct measurement of 
conductivity leads, of course, to more accurate results than estimation with any of the neural 
network models. RMSEK of models C2, C3, and C4 are significantly higher (approximately 0.8) 
than the RMSEK of the direct fit to the measured K-h data (Table 1, 0.41). The results for direct 
fit are essentially averages for individual samples and are insensitive to variations among 
samples due to differences in, for example, measurement methods. The neural network models, 
however, attempt to implement relations that are valid for all the samples in the calibration data 
set. Consequently, the RMSEK of the model predictions are sensitive to systematic and random 
differences that exist from sample to sample. 

Calibration for Rosetta 
An overview of the performance of the hierarchical models for prediction of water 

retention parameters and Ks is given in Table 3. Not surprisingly, the results show that 
correlations between fitted and predicted parameters increase and RMSE values decrease when 
more predictors are used (H1...H5). Residual water content is difficult to predict with any 
model, while saturated water content is difficult to predict without information about bulk 
density. The correlation for a increases considerably when one or two retention points are added 
to the predictors (H4 and H5). The n parameter and Ks generally have the highest correlations 
showing a gradual increase in R2 from Model HI to H5. 



Table 3. R2 and RMSE values for the five hierarchical models to predict water retention 
parameters and saturated hydraulic conductivity. SSC: percentages sand, silt and clay; BD: bulk 
density; <9}3, 6>i5oo: water contents at 330 and 15 000 cm pressure. The RMSEW for the direct fit to 
water retention data is also shown. 

Model Input 
Water retention Saturated Conductivity 

R1 RMSEw 
cm3/cm3 

R1 

LogKs 

RMSES (MES) 
(-) a 0s Log a Log n 

HI 
H2 
H3 
H4 
H5 

Textural Class 
SSC 
SSCBD 
SSCBD 0}3 

SSCBD033015OO 

0.066 
0.086 
0.094 
0.121 
0.387 

0.143 
0.178 
0.581 
0.605 
0.600 

0.203 
0.238 
0.265 
0.417 
0.577 

0.452 
0.473 
0.495 
0.599 
0.760 

0.078 
0.076 
0.068 
0.047 
0.044 

0.427 
0.461 
0.535 
0.640 
0.647 

0.739 (-0.001) 
0.717 (-0.001) 
0.666 (0.000) 
0.586 (-0.004) 
0.581 (-0.002) 

Direct fit to data                      -           -           -           -     I     0.012        -      | 

Figure 4 shows the RMSEW for models HI.. .H5 for water retention for ten pressure head 
classes as well as the number of water retention points in each class (bars). The RMSEW of the 
direct fit to the data (F) serves as the minimum possible error. No PTF can predict water 
retention better than this fit. Models HI and H2 show a very similar pattern, indicating that there 
is not much to be gained by using textural classes or the sand, silt or clay percentages without 
other predictors. Model H3, however, shows considerable improvement near saturation and a 
better performance until A=3,200 cm (i.e. log /*=3.5). Usage of a water content at 330 cm (H4) 
improves the prediction between 10 and 10 000 cm, whereas addition of a water content at 15 bar 
provides a further improvement beyond 100 cm. Because of the small number of observations, 
the graph is unreliable for h > 32,000 cm. 

Figure 5 shows a similar picture for MEW; negative numbers denote underestimation by 
the models. Clearly, the direct fit to the data (F) closely adheres the line of MEw=0, indicating 
that Eq. (2) adequately describes retention data over the entire pressure head range. All models 
underestimate water retention near saturation (A<3.2 cm or log h < 1.5) and overestimate water 
contents between 3.2 and 10 cm; all models underestimate water retention beyond 32 cm. 
Models H1...H3 all have a very similar behavior, while models H4 and H5 make smaller 
systematic errors for h >100 cm. Mean errors for Ks are essentially equal to zero (Table 1). 
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Figure 4. RMSEW (lines, left axis) of the direct fit to water retention data (F) and the five 
hierarchical models (H1...H5). The number of retention points for each pressure head class is 
also shown (bars, right axis). 
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Figure 5. MEW of the direct fit to water retention data (F) and the five hierarchical models 
(HI.. .H5). A negative value indicates an underestimation of water contents. 
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Results for three different methods to predict K(h) appear in Table 4. The first method 
(MVG) is the traditional Mualem-van Genuchten model (K0=KS and Z=0.5. The second method 
(C2-Fit) is model C2 of Schaap and Leij [2000] that predicts K0 and L from fitted retention 
parameters. The third method also uses model C2 but with predicted retention parameters 
derived from models HI to H5 as input (denoted as: C2-H1...C2-H5). In this case, we also use 
predicted n and Se values in Eq. (3), which are derived from predicted a and n (Eq. (1)). 

MVG model clearly provides the poorest predictions of K(h) with an average RMSEU of 
1.40 (i.e. 1.4 order of magnitude). Schaap and Leij [2000] showed that its prediction was 
especially poor for clayey soils (RMSEU=1.70). RMSEU increased to about 1.5 for hydraulic 
parameters predicted with models H1...H5 (data not shown). Model C2-Fit has an RMSEU that is 
almost half an order of magnitude lower (0.79), while it also has a more uniform performance 
over all textural classes (see Schaap and Leij, 2000). As expected, models C2-H1...C2-H5 do 
not perform as well as model C2-Fit, but better than the MVG model. For example, model C2- 
H5 has an RMSEU that is only slightly higher than that of C2-Fit (0.90 vs. 0.79). Note however, 
that the correlations for K0 and L of models C2-H1...C2-H4 are extremely poor and only slightly 
better for model C2-H5. 

Figure 6 shows the RMSEU for ten pressure head classes as well as the number of 
conductivity measurements in each class (bars). The direct fit of in Eq. (3) to the data (F) 
indicates the minimum attainable error for all models with flexible K0 and L. We note that the 
direct fit has a relatively large error near saturation. As expected, model C2-Fit has the best 
overall performance. Model C2-H5 has a very similar performance between h=\0 and 3,200 cm 
(1 < log h < 3.5), while models C2-H1.. .C2..H4 have similar performances in the range between 
10 and 1000 cm. The MVG model has the worst overall performance, except for near saturated 
conditions where it performs better than all other models - even better than the direct fit of K0 

and L. This is a result of the assumption that K0=KS. The RMSEU of all models strongly increases 
beyond 3,200 cm. However, in this range there are only a few data points. 

Figure 7 shows the mean error for the ten pressure head groups; negative values indicate 
an underestimation of unsaturated hydraulic conductivity. The MVG model exhibits a strong 
overestimation of hydraulic conductivity over the entire pressure head range. Models C2-Fit and 
C2-H1 through C2-H5 are all based on fitted K0 and L, and therefore, they show similar problems 
of underestimating conductivity between 0 and 32 cm. The mean errors are near zero between 32 
and 1000 cm, but rapidly become more negative beyond 1000 cm. This is probably caused by an 
inability to accurately predict the L parameter, which controls the slope of the conductivity curve 
under dry circumstances. Again, model C2-Fit has the best performance, followed by Model C2- 
H5. 
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Figure 6. RMSEU (lines, left axis) for the direct fit to conductivity data (F), for model C2 using 
fitted retention parameters (C2-FIT), model C2 using predicted retention parameters from the 
hierarchical approach (C2-H1...C2-H5). The Mualem-van Genuchten model with K0=KS and 
Z=0.5 is shown as MVG. The number of conductivity points per pressure head class is also 
shown (bars, right axis). 
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Figure 7. MEU for the direct fit to conductivity data (F), for model C2 using fitted retention 
parameters (C2-FIT), model C2 using predicted retention parameters from the hierarchical 
approach (C2-H1.. .C2-H5). The Mualem-van Genuchten model with K0=KS and Z=0.5 is shown 
as MVG. 
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Discussion 
The results of our study showed that the traditional use of the Mualem-van Genuchten 

model to predict the unsaturated conductivity, i.e., with K0=KS and 1=0.5, leads to relatively poor 
predictions of unsaturated hydraulic conductivity (RMSEK=1.31). A neural network model was 
derived that predicts both K0 and L from retention parameters (#, 0S, a, n) with a RMSEK of 
0.84, which was a substantial improvement over the traditional Mualem-van Genuchten model 
(cf. Table 2). 

The calibration of PTFs for the Rosetta program demonstrated that there is no such thing 
as a "free lunch" when predicting instead of measuring hydraulic properties. Even with the best 
models, H5 for retention and C2-Fit for unsaturated conductivity, the correlations between 
predicted and fitted or measured hydraulic parameters are modest at best (cf. Table 3 and 4). The 
differences between RMSE and ME values of prediction and direct fits (Fig. 4-7) further suggest 
that the models in this study could be improved upon. However, the direct fits only give the 
theoretically minimum attainable errors for PTFs because Eq. (2) and (3) are fitted to individual 
characteristics. Therefore, the fit ignores any effects that cause variation among hydraulic 
properties, such as variability in physical soil properties or systematic differences among 
measurement methodologies. In contrast, the PTFs are supposed to be valid for the ensemble of 
all characteristics. This problem is illustrated in Fig. 8 in which we plotted retention data for a 
narrow selection of 47 loam samples with bulk densities between 1.3 and 1.4 gr/cm3. The 
average retention curve, as predicted by H3, is also shown. We expect to see retention data in a 
narrow band, but the figure shows that there is a considerable scatter. This scatter of data points 
is unlikely to be caused by the narrow range in texture or bulk density. Rather, the variation may 
be caused by factors other than texture and bulk density or by systematic differences in 
measurement methodologies. 
Improved PTFs were obtained by Vereecken et al. [1989] and Schaap and Bouten [1996] who 
used more particle size fractions. Other predictors can also be used to improve the performance 
of the models, such as: organic matter content, porosity, particle density soil chemical 
parameters, soil structure, mineralogy, pedality, among others (cf. Rawls et al., 1991). However, 
using more predictors also requires that they be available for both calibration of PTFs and their 
application. This causes a scenario where measurement of input parameters diminishes the 
advantages of PTFs over direct measurement of hydraulic properties. From this perspective, the 
inclusion of measured water retention points [cf. Ahuja et al., 1989; Messing, 1989; Williams et 
al, 1992; Schaap and Bouten, 1996] is a pragmatic way to improve the prediction of PTFs. 
Water retention points can be viewed as lumped parameters that contain implicit information 
about hydraulic properties not provided by soil texture or bulk density. In many cases, one or 
two retention points can be measured relatively quickly or are available in national databases 
such as the NRCS database, which contains more than 120,000 soil horizons for the USA [Soil 
Survey Staff, 1995]. Using the same data as in Fig 8, we plotted predicted versus measured 
retention points for model H3 and H5 in Fig. 9. While the agreement with the measured data is 
not perfect, the predictions by model H5 are much better than the predictions by model H3. If 
retention points are not available, models H1...H3 may still make acceptable predictions - also 
considering that these models were calibrated on the same data as models H4 and H5. 
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Figure 8. Water retention data for 47 loam samples (totaling 412 points) with a bulk density 
range between 1.3 and 1.4 g/cm3. The curve represents the prediction with model H3. 
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Figure 9. Predicted versus measured water contents for model H3 and H5 for 47 loam samples 
with bulk densities between 1.3 and 1.4 gr/cm3 (cf. Fig 8). 
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The ability of the hydraulic functions to match the hydraulic data is another important 
factor. Figures 4 and 5 demonstrated that fits of Eq. (2) described water retention data well. For 
hydraulic conductivity however, we see that the direct fit of Eq. (3) has large RMSEU near 
saturation and a predominantly negative MEU (Fig. 6 and 7). This indicates that Eq. (3) is not 
suitable for simultaneously fitting the wet and the dry part of the unsaturated hydraulic 
conductivity curve. All models based on fitted K0 and L will perform poorly near saturation. 
Schaap and Leij [2000] found that the fitted K0 was often about one order of magnitude lower 
than the measured Ks value, thus causing a discontinuity in hydraulic conductivity if Eq. (3) near 
saturation. They interpreted this difference in terms of macropores that predominantly influenced 
Ks and properties of the soil matrix that determined K0. An improved version of Eq. (3) may need 
to consider the effects of macropores. Unfortunately, such an effort is hampered by a lack of 
measured hydraulic conductivities near saturation (cf. Fig. 6). 

Description of Rosetta 
The program is named somewhat whimsically after the Rosetta Stone that allowed 

translation of ancient Egyptian hieroglyphs into Old Greek, the computer program Rosetta has a 
somewhat more mundane task of enabling the user to "translate" basic soil data into soil 
hydraulic properties. Rosetta allows user-friendly access to models H1...H5 for water retention 
and saturated hydraulic conductivity and models C2-Fit and C2-H1...C2-H5 for unsaturated 
hydraulic conductivity. This section can only describe the most important features of Rosetta. 
More information about various aspects of the program and file specifications may be obtained 
through the help system which can be accessed from anywhere within the program. Rosetta is 
primarily a Windows 98® application but should work with upgraded versions of Windows 95® 
and NT as well. Data and predictions are stored in a Microsoft ACCESS 97® database file; The 
Microsoft ACCESS software, however, is not needed to run Rosetta. Command-line versions of 
Rosetta (without data base support) are available for the MS-DOS® and the LINUX operating 
systems. Rosetta is freely available at: http:\\www.ussl.ars.usda.gov\models\rosetta\rosetta.htm. 

The flow of data inside Rosetta is illustrated in Figure 10. Input data can be entered 
manually screens or be input through a formatted ASCII file. Input and output data are stored in 
various tables in the same database file and accessed by the program as needed. Basic soil data 
(sand, silt, and clay percentages, bulk density and the water contents at 330 and 15,000 cm) are 
used by the hierarchical models (HI.. .H5) to predict water retention parameters and Ks. Model 
C2 uses fitted retention parameters to predict K0 and L (i.e. C2-Fit) but is also able to use 
predicted retention as input as illustrated by the model combinations C2-H1 through C2-H5 in 
this study. Predicted hydraulic parameters are displayed on the screen and stored in the database 
file along with the input data. 
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Figure 10. Schematic overview of the structure of Rosetta. 

After starting Rosetta, a user will typically open an existing database file or create a new 
one. Using the menu bar, the user will then probably select the hierarchical models to predict all 
seven hydraulic parameters (i.e. #, 6>s, a,n,Ks,K0 and L) or model C2-Fit to predict K0 and L 
using fitted retention parameters according to Schaap and Leij [2000]. Both options will open 
different screens, but for reasons of brevity, we will deal here only with the hierarchical models. 

The screen for the hierarchical models displays data ("records") for one soil sample at the 
time (Figure 11). At the bottom, the user can select one out of six options, five of which 
correspond to models H1...H5. The "Best possible model" is selected by Rosetta based on the 
available input data. The box on the left marked "Input Data" allows manual entry or revision of 
input data. The fields near "Code" (top of the box) identify particular records. The other fields 
allow input of textural data, bulk density and one or two water contents. Depending on the model 
that was selected, the appropriate fields will light up for data entry. The user can only select the 
textural class if model HI is selected (bottom of Fig. 11). For the other models, this box will 
contain an automatic (USDA) texture classification based on the sand, silt, and clay percentages 
Records can be added and deleted with the "+" and "-" symbols; ongoing modifications of 
records can be abandoned by clicking on the "$ " symbol. Besides manual entry, data can also 
be entered by means of formatted ASCII files through the "File" menu bar. We suggest this 
mechanism when more than a few soil samples need to be entered. The four "arrow" signs on the 
left side of the menu bar allow navigation through the contents of the database. 
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Figure 11. Screen view of Rosetta's hierarchical models, see text for explanation 

Once the data are entered, predictions can be made by clicking the mouse on the single or 
double exclamation marks in the toolbar. The single exclamation mark will generate predictions 
for the currently visible record, while the double exclamation mark will generate predictions for 
the entire database. The latter option may take some time, depending on the number of records in 
the database and the processor speed of the computer. The user will be notified of problems with 
the input data (e.g. clay+silt+sand > 100%) when the single exclamation mark is used. Invalid 
input data result in "-9.9" in the output fields. 

Predicted hydraulic properties appear in the box marked with "Output Data". The top of 
this box identifies the model used for the prediction by its input data (i.e., sand, silt, clay bulk 
density, and Oat 330 and 15,000 cm in Fig 11). The predicted hydraulic parameters appear along 
with their uncertainties as standard deviations. These standard deviations are based on the 
variability in predictions among the 60 or 100 neural networks inside each model (see section 
2 3). The parameters a, n, Ks and K0 are predicted as log10 values and the uncertainties apply to 
these figures. The standard deviations should not be interpreted as "field variability", rather they 
are model uncertainties that depend on the calibration data set [cf. Schaap andLeij, 1998]. 

The predicted hydraulic parameters are stored in the database and are overwritten each 
time a new prediction is made. Besides reading predicted properties from the screen, the user 
may extract input and output data from the database into a simple ASCII format. It is also 
possible to use the database directly in Microsoft ACCESS if so desired. 
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Summary and Conclusions 
This report first documents our efforts to establish PTFs for the unsaturated hydraulic 

conductivity from fitted retention parameters. This requires the availability of observed retention 
data. The major part of the report is devoted to the implementation of neural networks for the 
hierarchical prediction of hydraulic properties with the program Rosetta. This program contains 
five PTFs for prediction of water retention parameters, saturated and unsaturated hydraulic 
conductivity. The models were characterized in terms of their calibration data sets and the 
quality of their predictions. For the prediction of water retention and saturated hydraulic 
conductivity, it turned out that the hierarchical models performed reasonably well if many 
predictors were used (texture, bulk density and one or two retention points). Although the 
predictions were less accurate when fewer predictors were used, such models may still have 
more value than no predictions at all. This study showed that it was also possible to get 
reasonable predictions of unsaturated hydraulic conductivity using predicted retention 
parameters derived from the hierarchical models. Although the new models are better than the 
"traditional" Mualem-van Genuchten model (K0=KS, 1=0.5) they are unable to deal with the 
transition from saturated to unsaturated hydraulic conductivity. 

The models were implemented in a computer program Rosetta. This program has a user- 
friendly graphical interface and combines the PTFs with a simple database management structure 
to facilitate data management. The program is available free of charge from the GEBJ Salinity 
Laboratory's World-Wide-Web site. 

The PTFs in Rosetta still require input data and if these data cannot be gleaned from 
existing databases, they must be measured in some way. Users may ask themselves whether it is 
preferably to devote experimental efforts to obtain input data for PTFs or to directly determine 
the unsaturated hydraulic properties. The answer may depend on the application. If the user is 
content with a moderate level of accuracy then PTFs may indeed provide hydraulic properties 
without further measurements. However, we showed in this study that the inclusion of one or 
two (measured) water contents in the input data generally leads to superior PTFs. It therefore 
seems that measurements cannot always be avoided if accurate predictions of hydraulic 
properties are required. Ultimately, however, the accuracy of hydraulic properties cannot be a 
goal in itself. Rather, the context in which they are used will define the required accuracy. 

Quantifying the unsaturated hydraulic properties with direct and indirect methods will 
benefit greatly if an adequate database of (potential) input data and output data is available. In 
the past we have developed the UNSODA database [Leij et al., 1996]. As part of the project, we 
have converted this database into a Windows version [cf. Nemes et al., 2001]. Just as Rosetta, the 
database can also be acquired from our website http:Wwww.ussl.ars.usda.gov. 

Finally, the PTF concept may also be extended to predict parameters for chemical 
transport from more readily available data. Measurement of transport parameters is hampered by 
similar constraints as those for hydraulic properties. We have lately developed a neural network 
to predict transport parameters (dispersion coefficient, solute retardation factor, and 
nonequilibrium parameters) based on a data set for Portuguese clay soils (reference 5). 

A remaining and important challenge is the development of PTFs that account for the 
calibration and application scale. Thus far, our neural network models were based on "point" 
samples. However, many potential applications involve input and output data over larger scales. 
For applications that deal with Geographic Information System and remote sensing, among 
others, it is desirable to develop PTFs that consider the uncertainty due to spatial variability. 
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